If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x+88=0
a = 2; b = 32; c = +88;
Δ = b2-4ac
Δ = 322-4·2·88
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{5}}{2*2}=\frac{-32-8\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{5}}{2*2}=\frac{-32+8\sqrt{5}}{4} $
| 4x-2(x+3)=4 | | -7x-4=- | | -2=3x-14 | | 3x-9/5+x+28/4=4 | | 4(x-3)/3=20 | | (2h+7)-(1h+6)+3h=9 | | b+20=8 | | 13-20c=-11c-13-11c | | -x/4-7=2 | | -7v=917 | | -4=x/2+4 | | 9x-0.8=8.2 | | 2(n-12)=16 | | (10x)(7/4)(2)=70 | | t/13-444=-427 | | 8x-(1)=41 | | 540=18k | | r-375=-171 | | X+12+x+18=16 | | 2-3u=-10-u | | 12x2-20x+7=0 | | 4-5m-2=-23 | | 3x+8+2x=x-6 | | 13=b+64 | | 728=90-11f | | 4a+1=a-5+3a | | -2-3q=10-5q | | x/14-1/2=1/14+x | | W-60=-12w | | t-34=10 | | -24=3d | | 1.6=7x-10 |